Introduction: This study aims to investigate the effects of different lifestyles, health conditions, and environmental factors on insomnia through a multifactor comprehensive analysis based on data from patients in China. Methods: The study consists of two parts: Study 1 used interviews to collect information on living habits, health conditions, and sleep environments from 97 individuals with poor sleep. Study 2 employed a questionnaire survey method to analyze insomnia-related data from 300 patients. Results: Using Spearman correlation analysis and binary logistic regression analysis, the study identifies significant correlations between insomnia and factors such as age, sleep environment, sleep habits, tea drinking, coffee drinking, night snacking, and watching videos before bed. An increase in age significantly correlates with a decrease in insomnia incidence (B = -0.34, p<0.01); A good sleep environment (B = 1.23, p<0.01) and regular sleep habits (B = 1.03, p<0.01) can significantly reduce the risk of insomnia; Conversely, drinking tea (B = -0.68, p<0.05), drinking coffee (B = -0.94, p<0.05), night snacking (B = -1.15, p<0.01), and watching videos before bed (B = 1.46, p<0.01) significantly heighten the risk of insomnia. Discussion: This study mainly investigates the impact of various factors like lifestyle habits, health conditions, and sleep environment on insomnia. Study 1, through interviews and subsequent analysis, identified 24 factors that might relate to sleep; Study 2, through surveys and analysis, found that age, sleep environment, sleep habits, tea drinking, coffee drinking, late-night snacking, and watching videos before bed formed a valid logistic regression prediction model for insomnia. Implications: This study supports the comprehensive effects of multiple factors on insomnia and underscores the importance of optimizing living habits and environment to enhance sleep quality. Future research may consider further investigating the effects of different factors on insomnia and exploring interventions and treatments for insomnia.
Published in | American Journal of Health Research (Volume 13, Issue 2) |
DOI | 10.11648/j.ajhr.20251302.14 |
Page(s) | 109-119 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Insomnia, Lifestyle, Health Status, Sleep Environment, Logistic Regression
Influencing factor | Y | N |
---|---|---|
Gender | Female 35 | Male 62 |
Occupation | 44 | 53 |
Trait | 50 | 47 |
IR | 93 | 4 |
SE | 73 | 24 |
CD | 15 | 82 |
MC | 49 | 48 |
ES | College or above 71 | Junior College and below 26 |
SH | 43 | 54 |
WS | 59 | 38 |
Napping | 57 | 40 |
EBD | 19 | 78 |
Smoking | 11 | 86 |
DA | 19 | 78 |
DT | 34 | 63 |
DC | 25 | 72 |
ELNS | 20 | 77 |
WVBS | 88 | 9 |
DHCBS | 25 | 72 |
CWBS | 61 | 36 |
RBS | 47 | 50 |
SFBS | 44 | 53 |
Pain | 16 | 81 |
Model | Unstd. B | se | Std. Beta | t | p | Tolerance | VIF |
---|---|---|---|---|---|---|---|
gender | 0.04 | 0.07 | 0.04 | 0.61 | 0.55 | 0.62 | 1.62 |
Age | -0.06 | 0.02 | -0.24 | -3.29 | 0.00 | 0.54 | 1.87 |
Occupation | 0.06 | 0.08 | 0.05 | 0.70 | 0.48 | 0.50 | 1.99 |
Trait | 0.09 | 0.06 | 0.10 | 1.64 | 0.10 | 0.79 | 1.27 |
IR | -0.07 | 0.08 | -0.06 | -0.85 | 0.40 | 0.54 | 1.84 |
SE | 0.18 | 0.07 | 0.17 | 2.47 | 0.01 | 0.62 | 1.62 |
CD | 0.03 | 0.06 | 0.03 | 0.53 | 0.60 | 0.67 | 1.49 |
MC | 0.04 | 0.07 | 0.04 | 0.61 | 0.54 | 0.66 | 1.52 |
ES | 0.02 | 0.06 | 0.02 | 0.31 | 0.76 | 0.61 | 1.64 |
SH | 0.19 | 0.06 | 0.20 | 3.26 | 0.00 | 0.73 | 1.37 |
WS | 0.05 | 0.06 | 0.06 | 0.86 | 0.39 | 0.69 | 1.46 |
Napping | 0.01 | 0.05 | 0.01 | 0.23 | 0.82 | 0.82 | 1.22 |
EBD | -0.03 | 0.08 | -0.02 | -0.35 | 0.73 | 0.61 | 1.63 |
Smoking | -0.08 | 0.08 | -0.08 | -0.99 | 0.32 | 0.50 | 2.00 |
DA | 0.07 | 0.09 | 0.07 | 0.81 | 0.42 | 0.42 | 2.40 |
DT | -0.14 | 0.06 | -0.14 | -2.23 | 0.03 | 0.70 | 1.43 |
DC | -0.18 | 0.09 | -0.15 | -2.15 | 0.03 | 0.59 | 1.70 |
ELNS | -0.21 | 0.07 | -0.19 | -2.78 | 0.01 | 0.64 | 1.58 |
WVBS | 0.22 | 0.06 | 0.23 | 3.45 | 0.00 | 0.63 | 1.58 |
DHCBS | 0.06 | 0.06 | 0.06 | 0.96 | 0.34 | 0.77 | 1.30 |
CWBS | 0.06 | 0.06 | 0.07 | 1.02 | 0.31 | 0.62 | 1.61 |
RBS | -0.06 | 0.06 | -0.06 | -0.93 | 0.35 | 0.74 | 1.36 |
SFBS | 0.00 | 0.05 | 0.00 | 0.04 | 0.97 | 0.86 | 1.16 |
Pain | 0.10 | 0.06 | 0.10 | 1.61 | 0.11 | 0.74 | 1.36 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1Insomnia | 1 | |||||||||||
2gender | 0.02 | 1 | ||||||||||
3Age | -.16** | -0.05 | 1 | |||||||||
4Occupation | 0.05 | .27** | .13* | 1 | ||||||||
5Trait | .15** | .18** | .10* | .35** | 1 | |||||||
6IR | 0.03 | .21** | -0.04 | .50** | .19** | 1 | ||||||
7SE | .17** | .16** | 0.03 | .34** | .15** | .35** | 1 | |||||
8CD | .13* | 0.03 | -.39** | -0.02 | -0.01 | .26** | .16** | 1 | ||||
9MC | .14** | .14** | -.16** | .32** | .14** | .39** | .38** | .27** | 1 | |||
10ES | -0.06 | 0.02 | .34** | .19** | 0.06 | 0.08 | 0.06 | -0.06 | 0.03 | 1 | ||
11SH | .20** | .10* | .13* | .24** | .23** | .26** | .40** | -0.02 | .22** | 0.05 | 1 | |
12WS | 0.04 | .25** | .26** | .29** | .27** | .19** | .18** | -0.06 | 0.03 | .25** | .18** | 1 |
13Napping | -0.06 | -0.09 | 0.05 | .12* | -0.05 | .11* | 0.09 | 0.05 | -0.03 | .25** | -0.03 | 0.07 |
14EBD | 0.01 | .20** | 0.06 | .34** | .15** | .34** | .35** | 0.06 | .22** | .30** | .29** | .23** |
15Smoking | -0.03 | .51** | 0.03 | .37** | .21** | .39** | .30** | 0.09 | .25** | 0.07 | .22** | .26** |
16DA | 0.01 | .44** | 0.02 | .43** | .17** | .37** | .41** | 0.06 | .31** | 0.02 | .32** | .17** |
17DT | -.10* | .29** | 0.02 | .22** | .10* | .18** | .21** | 0.03 | .16** | .23** | .19** | .20** |
18DC | -.12* | .14** | .12* | .34** | 0.08 | .34** | .29** | -0.01 | .20** | .30** | .20** | .35** |
19ELNS | -.11* | .22** | .20** | .33** | .21** | .30** | .31** | -0.06 | .20** | 0.09 | .26** | .20** |
20WVBS | .11* | -0.05 | .43** | 0.07 | 0.09 | -.10* | -0.07 | -.26** | -0.08 | .20** | 0.06 | .240** |
21DHCBS | .12* | -0.04 | -0.08 | 0.08 | 0.08 | .15** | .21** | .16** | .15** | .12* | 0.04 | .15** |
22CWBS | 0.02 | 0.01 | .42** | 0.08 | .11* | 0.09 | 0.03 | -.17** | 0.07 | .30** | 0.1 | .21** |
23RBS | -0.03 | .13* | 0.02 | 0.08 | 0.01 | .12* | 0.08 | -0.01 | -0.02 | .34** | -0.01 | .17** |
24SFBS | 0.03 | .14** | -0.08 | 0.05 | -0.05 | 0.08 | .11* | .12* | 0.04 | .18** | -0.01 | 0.01 |
25Pain | .12* | 0.05 | -.29** | 0.04 | 0.06 | .19** | .15** | .37** | .29** | -0.05 | 0.04 | -0.09 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||
.18** | 1 | |||||||||||
-0.03 | .35** | 1 | ||||||||||
-0.02 | .38** | .61** | 1 | |||||||||
.12* | .26** | .34** | .42** | 1 | ||||||||
.23** | .40** | .30** | .38** | .36** | 1 | |||||||
0.1 | .31** | .36** | .46** | .20** | .39** | 1 | ||||||
-0.01 | -0.01 | 0.01 | 0.01 | 0.05 | .10* | .17** | 1 | |||||
.12* | .28** | .10* | 0.06 | 0.06 | .17** | 0.07 | .13* | 1 | ||||
0.09 | .21** | 0.05 | 0.02 | 0.07 | .23** | .25** | .46** | .15** | 1 | |||
.13* | .28** | .12* | .15** | .16** | .23** | 0.1 | .13* | .24** | .19** | 1 | ||
0.08 | .10* | 0.04 | 0.02 | 0.04 | 0.05 | -0.04 | -0.09 | .10* | -0.01 | .13* | 1 | |
-0.02 | .13* | .15** | .13* | 0.07 | .14** | 0.07 | -.18** | 0.08 | -0.04 | .11* | .14** | 1 |
B | se | Wald | p | Exp (B) | LLCI | ULCI | ||
---|---|---|---|---|---|---|---|---|
Step 1a | Age | -0.34 | 0.11 | 9.96 | 0.00 | 0.72 | 0.58 | 0.88 |
Trait | 0.55 | 0.30 | 3.30 | 0.07 | 1.74 | 0.96 | 3.15 | |
SE | 1.23 | 0.46 | 7.17 | 0.01 | 3.42 | 1.39 | 8.41 | |
CD | 0.18 | 0.35 | 0.26 | 0.61 | 1.19 | 0.61 | 2.35 | |
MC | 0.32 | 0.39 | 0.67 | 0.41 | 1.37 | 0.64 | 2.94 | |
SH | 1.03 | 0.35 | 8.91 | 0.00 | 2.81 | 1.43 | 5.55 | |
DT | -0.68 | 0.32 | 4.55 | 0.03 | 0.51 | 0.27 | 0.95 | |
DC | -0.94 | 0.43 | 4.83 | 0.03 | 0.39 | 0.17 | 0.90 | |
ELNS | -1.15 | 0.39 | 8.70 | 0.00 | 0.32 | 0.15 | 0.68 | |
WVBS | 1.46 | 0.37 | 15.46 | 0.00 | 4.30 | 2.08 | 8.90 | |
DHCBS | 0.22 | 0.36 | 0.38 | 0.54 | 1.25 | 0.62 | 2.51 | |
Pain | 0.36 | 0.35 | 1.05 | 0.31 | 1.43 | 0.72 | 2.82 |
IR | Interpersonal Relation |
SE | Sleep Environment |
CD | Chronic Diseases |
MC | Mental Condition |
ES | Educational Status |
SH | Sleep Habits |
WS | Work Stress |
EBD | Exercising Before Bed |
DA | Drinking Alcohol |
DC | Drinking Coffee |
ELNS | Eating Late-night Snacks |
WVBS | Watching Videos Before Sleep |
DHCBS | Doing Household Chores Before Sleep |
CWBS | Chatting on WeChat Before Sleep |
RBS | Reading Before Sleep |
SFBS | Soaking Feet Before Sleep |
[1] | Miyachi, T.; Nomura, K.; Minamizono, S.; Sakai, K.; Iwata, T.; Sugano, Y.; Sawaguchi, S.; Takahashi, K.; Mishima, K. Factors Associated with Insomnia Among Truck Drivers in Japan. Nat Sci Sleep. 2021, 13: 613-623. |
[2] | Perlis, M. L.; Posner, D.; Riemann, D.; Bastien, C. H.; Teel, J.; Thase, M. Insomnia. Lancet. 2022, 400: 1047-1060. |
[3] | Wang, C.; Xu, W. L.; Li, G. W.; Fu, C.; Li, J. J.; Wang, J.; Chen, X. Y.; Liu, Z.; Chen, Y. F. Impact of Acupuncture on Sleep and Comorbid Symptoms for Chronic Insomnia: A Randomized Clinical Trial. Nat Sci Sleep. 2021, 13: 1807-1822. |
[4] | Winkelman, J. W. Insomnia Disorder. New Engl J Med. 2015, 373(15): 1437-1444. |
[5] | Wong, V. W.; Yiu, E. K.; Ng, C. H.; Sarris, J.; Ho, F. Y. Unraveling the associations between unhealthy lifestyle behaviors and mental health in the general adult Chinese population: A cross-sectional study. J Affect Disorders. 2024, 349: 583-595. |
[6] | Riemann D, K. L. W. K. Sleep, insomnia, and depression. Neuropsychopharmacol. 2020, 45(1): 74-89. |
[7] | Chellappa, S. L.; Aeschbach, D. Sleep and anxiety: From mechanisms to interventions. Sleep Med Rev. 2022, 61: 101583. |
[8] | Riemann, D.; Espie, C. A.; Altena, E.; Arnardottir, E. S.; Baglioni, C.; Bassetti, C. L. A.; Bastien, C.; Berzina, N.; Bjorvatn, B.; Dikeos, D.; et al. The European Insomnia Guideline: An update on the diagnosis and treatment of insomnia 2023. J Sleep Res. 2023, 32(6). |
[9] | Pavlinac, D. I.; Lusic, K. L.; Demirovic, S.; Pecotic, R.; Valic, M.; Dogas, Z. Sleep and Lifestyle Habits of Medical and Non-Medical Students during the COVID-19 Lockdown. Behav Sci-Basel. 2023, 13(5). |
[10] | Sugano, Y.; Miyachi, T.; Ando, T.; Iwata, T.; Yamanouchi, T.; Mishima, K.; Nomura, K. Diabetes and anxiety were associated with insomnia among Japanese male truck drivers. Sleep Med. 2022, 90: 102-108. |
[11] | Zhang, J.; Mi, L.; Zhao, J.; Chen, H.; Wang, D.; Ma, Z.; Fan, F. The Moderating Role of Lifestyle on Insomnia in Home Quarantine College Students During the COVID-19 Epidemic. Front Psychiatry. 2022, 13: 830383. |
[12] | Javaheri S, R. S. Insomnia and Risk of Cardiovascular Disease. Chest. 2017, 152(2): 435-444. |
[13] | Groeneveld, L.; den Braver, N. R.; Beulens, J. W. J.; van der Heijden, A. A.; van der Reep, A. C.; Remmelzwaal, S.; Elders, P. J. M.; Rutters, F. The prevalence of self-reported insomnia symptoms and association with metabolic outcomes in people with type 2 diabetes: the Hoorn Diabetes Care System cohort. J Clin Sleep Med. 2023, 19(3): 539-548. |
[14] | Cross, N. E.; Carrier, J.; Postuma, R. B.; Gosselin, N.; Kakinami, L.; Thompson, C.; Chouchou, F.; Dang-Vu, T. T. Association between insomnia disorder and cognitive function in middle-aged and older adults: a cross-sectional analysis of the Canadian Longitudinal Study on Aging. Sleep. 2019, 42(8). |
[15] | Morin, C. M.; Bjorvatn, B.; Chung, F.; Holzinger, B.; Partinen, M.; Penzel, T.; Ivers, H.; Wing, Y. K.; Chan, N. Y.; Merikanto, I.; et al. Insomnia, anxiety, and depression during the COVID-19 pandemic: an international collaborative study. Sleep Med. 2021, 87: 38-45. |
[16] | Mbous YPV, N. M. M. R. Psychosocial Correlates of Insomnia Among College Students. Prev Chronic Dis. 2022, 16: E60. |
[17] | Hu, S.; Chen, Y.; Chen, J.; Guo, Y.; Li, Y.; Shao, Y.; Yao, P.; Lu, L.; Tang, X.; Sun, H. The insensitivity of sleep to an unfamiliar sleeping environment in patients with insomnia disorder. Sleep Breath. 2024, 28(1): 467-473. |
[18] | Desaulniers, J.; Desjardins, S.; Lapierre, S.; Desgagné, A. Sleep Environment and Insomnia in Elderly Persons Living at Home. J Aging Res. 2018, 2018: 1-7. |
[19] | Mantua, J.; Ritland, B. M.; Naylor, J. A.; Simonelli, G.; Mickelson, C. A.; Choynowski, J. J.; Bessey, A. F.; Sowden, W. J.; Burke, T. M.; McKeon, A. B. Physical sleeping environment is related to insomnia risk and measures of readiness in US army special operations soldiers. Bmj Military Health. 2023, 169(4): 316-320. |
[20] | Ando, T.; Miyachi, T.; Sugano, Y.; Kamatsuka, M.; Mishima, K.; Nomura, K. The Relationship between Insomnia and Lifestyle-Related Diseases among Japanese Male Truck Drivers. Tohoku J Exp Med. 2023, 261(1): 1-11. |
[21] | Riemann, D.; Baglioni, C.; Bassetti, C.; Bjorvatn, B.; Dolenc Groselj, L.; Ellis, J. G.; Espie, C. A.; Garcia Borreguero, D.; Gjerstad, M.; Gonçalves, M.; et al. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017, 26(6): 675-700. |
[22] | Gharzeddine, R.; McCarthy, M. M.; Yu, G.; Dickson, V. V. Associations of insomnia symptoms with sociodemographic, clinical, and lifestyle factors in persons with HF: Health and retirement study. Res Nurs Health. 2022, 45(3): 364-379. |
[23] | Bredeli, E.; Vestergaard, C. L.; Sivertsen, B.; Kallestad, H.; Øverland, S.; Ritterband, L. M.; Glozier, N.; Pallesen, S.; Scott, J.; Langsrud, K.; et al. Intraindividual variability in sleep among people with insomnia and its relationship with sleep, health and lifestyle factors: an exploratory study. Sleep Med. 2022, 89: 132-140. |
[24] | Zeng, G.; Zeng, E. On the relationship between multicollinearity and separation in logistic regression. Communications in statistics. Simulation and computation. 2021, 50(7): 1989-1997. |
[25] | Gauthier, T. Detecting Trends Using Spearman's Rank Correlation Coefficient. Environ Forensics. 2001, 2(4): 359-362. |
[26] | Doos, A. V. H.; Hooman, F.; Sardarzehi, R.; Bastami, M.; Jansson-Frojmark, M. Prediction of insomnia severity based on early maladaptive schemas: a logistic regression analysis. Sleep Breath. 2024, 28(2): 919-927. |
[27] | Sperandei, S. Understanding logistic regression analysis. Biochem Medica. 2014: 12-18. |
[28] | Fagerland, M. W.; Hosmer, D. W. A generalized Hosmer – Lemeshow goodness-of-fit test for multinomial logistic regression models. The Stata Journal. 2012, 12(3): 447-453. |
[29] | Chabal, S.; Folstein, J. R.; Chinoy, E. D.; Markwald, R. R.; Lieberman, H. R. Caffeine consumption and sleep in a submarine environment: An observational study. J Sleep Res. 2023, 32(5): e13901. |
[30] | Roehrs, T.; Roth, T. Caffeine: Sleep and daytime sleepiness. Sleep Med Rev. 2008, 12(2): 153-162. |
[31] | Irish, L. A.; Mead, M. P.; Cao, L.; Veronda, A. C.; Crosby, R. D. The effect of caffeine abstinence on sleep among habitual caffeine users with poor sleep. J Sleep Res. 2021, 30(1): e13048. |
[32] | Faris, M. E.; Vitiello, M. V.; Abdelrahim, D. N.; Cheikh, I. L.; Jahrami, H. A.; Khaleel, S.; Khan, M. S.; Shakir, A. Z.; Yusuf, A. M.; Masaad, A. A.; et al. Eating habits are associated with subjective sleep quality outcomes among university students: findings of a cross-sectional study. Sleep Breath. 2022, 26(3): 1365-1376. |
[33] | Crispim, C. A.; Zimberg, I. Z.; Dos, R. B.; Diniz, R. M.; Tufik, S.; de Mello, M. T. Relationship between food intake and sleep pattern in healthy individuals. J Clin Sleep Med. 2011, 7(6): 659-664. |
[34] | Spaeth, A. M.; Dinges, D. F.; Goel, N. Sex and race differences in caloric intake during sleep restriction in healthy adults. The American Journal of Clinical Nutrition. 2014, 100(2): 559-566. |
[35] | Li, L.; Sheehan, C. M.; Petrov, M. E.; Mattingly, J. L. Prospective associations between sedentary behavior and physical activity in adolescence and sleep duration in adulthood. Prev Med. 2021, 153: 106812. |
[36] | Arnison, T.; Schrooten, M.; Bauducco, S.; Jansson-Frojmark, M.; Persson, J. Sleep phase and pre-sleep arousal predicted co-developmental trajectories of pain and insomnia within adolescence. Sci Rep-Uk. 2022, 12(1): 4480. |
[37] | Nordstoga, A. L.; Adhikari, S.; Skarpsno, E. S. The joint association of insomnia disorder and lifestyle on the risk of activity-limiting spinal pain: the HUNT Study. Sleep Med. 2024, 114: 244-249. |
[38] | Selvanathan, J.; Tang, N.; Peng, P.; Chung, F. Sleep and pain: relationship, mechanisms, and managing sleep disturbance in the chronic pain population. Int Anesthesiol Clin. 2022, 60(2): 27-34. |
[39] | Lee, S.; Smith, C. E.; Wallace, M. L.; Buxton, O. M.; Almeida, D. M.; Patel, S. R.; Andel, R. Ten-Year Stability of an Insomnia Sleeper Phenotype and Its Association with Chronic Conditions. Psychosom Med. 2024, 86(4): 289-297. |
[40] | Fidler, A. L.; Chaudhari, P.; Sims, V.; Payne-Murphy, J.; Fischer, J.; Cottler, L. B. Insomnia among community members in Florida: Associations with demographics, health conditions, and social support. J Clin Transl Sci. 2023, 7(1): e128. |
[41] | Luo, X.; Yu, T.; Yang, Z.; Wang, D. Psychotic-Like Experiences and Suicidal Ideation Among Adolescents: The Chain Mediating Role of Insomnia Symptoms and Resilience. Psychol Res Behav Ma. 2023, 16: 3519-3530. |
[42] | Ahorsu, D. K.; Imani, V.; Potenza, M. N.; Chen, H. P.; Lin, C. Y.; Pakpour, A. H. Mediating Roles of Psychological Distress, Insomnia, and Body Image Concerns in the Association Between Exercise Addiction and Eating Disorders. Psychol Res Behav Ma. 2023, 16: 2533-2542. |
[43] | Kaplan, K. A.; Talbot, L. S.; Gruber, J.; Harvey, A. G. Evaluating sleep in bipolar disorder: comparison between actigraphy, polysomnography, and sleep diary. Bipolar Disord. 2012, 14(8): 870-879. |
[44] | Yuan, H.; Hill, E. A.; Kyle, S. D.; Doherty, A. A systematic review of the performance of actigraphy in measuring sleep stages. J Sleep Res. 2024: e14143. |
[45] | Zhao, F.; Fu, Q.; Spencer, S. J.; Kennedy, G. A.; Conduit, R.; Zhang, W.; Zheng, Z. Acupuncture: A Promising Approach for Comorbid Depression and Insomnia in Perimenopause. Nat Sci Sleep. 2021, 13: 1823-1863. |
[46] | Choi, Y.; Yu, D.; Ha, K.; Min, J.; Choi, W.; Yun, D.; Kwak, B.; Kim, S.; Yoon, J.; Kim, H.; et al. Acupuncture for patients with insomnia and predictors of treatment response: a chart review. Acupunct Med. 2024, 42(2): 100-112. |
APA Style
Li, X., Zhou, X., Zhang, Y., Mei, R., Liu, J. (2025). Multifactor Analysis of Insomnia Influences: Predictive Effects of Patients' Lifestyle and Health Status in China. American Journal of Health Research, 13(2), 109-119. https://doi.org/10.11648/j.ajhr.20251302.14
ACS Style
Li, X.; Zhou, X.; Zhang, Y.; Mei, R.; Liu, J. Multifactor Analysis of Insomnia Influences: Predictive Effects of Patients' Lifestyle and Health Status in China. Am. J. Health Res. 2025, 13(2), 109-119. doi: 10.11648/j.ajhr.20251302.14
@article{10.11648/j.ajhr.20251302.14, author = {Xiaobin Li and Xiang Zhou and Yuna Zhang and Rui Mei and Jinhua Liu}, title = {Multifactor Analysis of Insomnia Influences: Predictive Effects of Patients' Lifestyle and Health Status in China }, journal = {American Journal of Health Research}, volume = {13}, number = {2}, pages = {109-119}, doi = {10.11648/j.ajhr.20251302.14}, url = {https://doi.org/10.11648/j.ajhr.20251302.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhr.20251302.14}, abstract = {Introduction: This study aims to investigate the effects of different lifestyles, health conditions, and environmental factors on insomnia through a multifactor comprehensive analysis based on data from patients in China. Methods: The study consists of two parts: Study 1 used interviews to collect information on living habits, health conditions, and sleep environments from 97 individuals with poor sleep. Study 2 employed a questionnaire survey method to analyze insomnia-related data from 300 patients. Results: Using Spearman correlation analysis and binary logistic regression analysis, the study identifies significant correlations between insomnia and factors such as age, sleep environment, sleep habits, tea drinking, coffee drinking, night snacking, and watching videos before bed. An increase in age significantly correlates with a decrease in insomnia incidence (B = -0.34, p<0.01); A good sleep environment (B = 1.23, p<0.01) and regular sleep habits (B = 1.03, p<0.01) can significantly reduce the risk of insomnia; Conversely, drinking tea (B = -0.68, p<0.05), drinking coffee (B = -0.94, p<0.05), night snacking (B = -1.15, p<0.01), and watching videos before bed (B = 1.46, p<0.01) significantly heighten the risk of insomnia. Discussion: This study mainly investigates the impact of various factors like lifestyle habits, health conditions, and sleep environment on insomnia. Study 1, through interviews and subsequent analysis, identified 24 factors that might relate to sleep; Study 2, through surveys and analysis, found that age, sleep environment, sleep habits, tea drinking, coffee drinking, late-night snacking, and watching videos before bed formed a valid logistic regression prediction model for insomnia. Implications: This study supports the comprehensive effects of multiple factors on insomnia and underscores the importance of optimizing living habits and environment to enhance sleep quality. Future research may consider further investigating the effects of different factors on insomnia and exploring interventions and treatments for insomnia. }, year = {2025} }
TY - JOUR T1 - Multifactor Analysis of Insomnia Influences: Predictive Effects of Patients' Lifestyle and Health Status in China AU - Xiaobin Li AU - Xiang Zhou AU - Yuna Zhang AU - Rui Mei AU - Jinhua Liu Y1 - 2025/03/13 PY - 2025 N1 - https://doi.org/10.11648/j.ajhr.20251302.14 DO - 10.11648/j.ajhr.20251302.14 T2 - American Journal of Health Research JF - American Journal of Health Research JO - American Journal of Health Research SP - 109 EP - 119 PB - Science Publishing Group SN - 2330-8796 UR - https://doi.org/10.11648/j.ajhr.20251302.14 AB - Introduction: This study aims to investigate the effects of different lifestyles, health conditions, and environmental factors on insomnia through a multifactor comprehensive analysis based on data from patients in China. Methods: The study consists of two parts: Study 1 used interviews to collect information on living habits, health conditions, and sleep environments from 97 individuals with poor sleep. Study 2 employed a questionnaire survey method to analyze insomnia-related data from 300 patients. Results: Using Spearman correlation analysis and binary logistic regression analysis, the study identifies significant correlations between insomnia and factors such as age, sleep environment, sleep habits, tea drinking, coffee drinking, night snacking, and watching videos before bed. An increase in age significantly correlates with a decrease in insomnia incidence (B = -0.34, p<0.01); A good sleep environment (B = 1.23, p<0.01) and regular sleep habits (B = 1.03, p<0.01) can significantly reduce the risk of insomnia; Conversely, drinking tea (B = -0.68, p<0.05), drinking coffee (B = -0.94, p<0.05), night snacking (B = -1.15, p<0.01), and watching videos before bed (B = 1.46, p<0.01) significantly heighten the risk of insomnia. Discussion: This study mainly investigates the impact of various factors like lifestyle habits, health conditions, and sleep environment on insomnia. Study 1, through interviews and subsequent analysis, identified 24 factors that might relate to sleep; Study 2, through surveys and analysis, found that age, sleep environment, sleep habits, tea drinking, coffee drinking, late-night snacking, and watching videos before bed formed a valid logistic regression prediction model for insomnia. Implications: This study supports the comprehensive effects of multiple factors on insomnia and underscores the importance of optimizing living habits and environment to enhance sleep quality. Future research may consider further investigating the effects of different factors on insomnia and exploring interventions and treatments for insomnia. VL - 13 IS - 2 ER -